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INTRODUCTION 

The current trend in powder metallurgy (PM) is away from the conventional 
pressed-and-sintered parts with density about 85% of theoretical to parts having 
densities over 90% or 95%.1 Densities close to theoretical are essential if PM 
parts are to be used in critical dynamic components. The dynamic mechanical 
properties such as toughness and fatigue are highly sensitive to density.2_1+ 

(Squire's plots2 have been reproduced in various standard treatments of powder 
metallurgy including Goetzel, W. D. Jones, and Hirschhorn.) Residual porosity 
severely impairs these properties, which fall off sharply as the porosity in- 
creases. Hence, interest is strong in test methods to qualify PM parts for crit- 
ical applications by measuring the extent of porosity and establishing that it 
does not exceed the porosity tolerable for the application. 

The physical properties usually providing the basis for nondestructive test- 
ing show a relationship with density (or porosity) that approaches linear, es- 
pecially as the porosity disappears. Among such properties are electrical resis- 
tivity and ultrasonic velocity. The static mechanical properties (yield strength, 
tensile strength, modulus) similarly approach a linear relationship with density. 
In contrast, the dynamic properties depart strongly from linearity and simulate 
an exponential relationship.  It is obvious that the application of high-density 
PM parts would be advanced by identification of a physical property having similar 
nonlinear sensitivity to density and lending itself to evaluation of a part, pref- 
erably by a rapid method adaptable to production rates. 

A clue to a suitable property was suggested by the doctoral dissertation of 
Youssef.5 His work on iron and nickel compacts included magnetic measurements 
which showed that at low magnetic fields the magnetization increases steeply with 
density. This sensitivity was related by Youssef to the effect of pores on re- 
versible displacement of domain boundaries. 

SCOPE OF PROGRAM 

The program was basically concerned with defining the magnetic behavior of a 
set of ferrous materials, representing a range of densities. The samples were 
also suitable for simple measurement of mechanical properties such as modulus of 
rupture and impact resistance. Square bars were prepared from a single type of 
high-purity iron powder with minimal carbon content, so as to maintain a common 
microstructure insensitive to any differences in thermal history. 

Magnetic measurements were performed with alternating rather than direct cur- 
rent (see Youssefs measurements) to obtain data for a method applicable with 

1. The Trend:  Denser, Larger Parts.   Metal Progress, v. 105, no. 4, April 1974, p. 92. 
2. SQUIRE, A.  Density as a Criterion of the Mechanical Properties of Iron Powder Compacts.   Watertown Arsenal Laboratory, 

Experimental Report No.  WAL 671/16, October 31, 1944; also, Density Relationship of Iron-Powder Compacts.   Trans.   AIME, 
v. 171, 1947, p. 485-505. 

3. JENKINS, I.  Some Aspects of Residual Porosity in Powder Metallurgy.   Powder Metallurgy, v. 7, no. 13, 1964, p. 68-93. 
4. KAUFMAN, S. M., and MOCARSKI, S.  The Effect of Small Amounts of Residual Porosity on the Mechanical Properties of 

PlM Forgings.   International Journal of Powder Metallurgy, v. 7, no. 3, 1971, p. 19-30. 
5. YOUSSEF, H.  Etude des proprietes magnetiques des metaux ferromagnetiques frittes et contribution a I etude de leurs proprietes 

mecaniques et electriques.  v. 45, 1970, p. 99-121 and p. 140-153; see Chemical Abstracts, v. 73, 1970, 112137p. 



reasonable speed in a production line. These measurements required correction for 
demagnetization factors. The a-c measurements also required consideration of eddy 
currents as affected by frequency and electrical resistance. 

PROCESSING OF SAMPLES 

Square bars were prepared with densities ranging from 80% to 100% of theoret- 
ical. Available dies guided the selection of sample geometry for compatibility 
with mechanical (Charpy, transverse rupture) and magnetic measurements. The latter 
require a length adequate to avoid end effects. Initially, the squares were 0.30 
inch on a side with a length of 3.5 inches; samples were prepared with densities 
of 81, 85, 89, and 93 percent. The die lacked the rigidity to achieve higher 
density in repressing. Hence, a sturdier die was used for 96% specimens measur- 
ing 2.95 x 0.39 x 0.39 inches (as for Charpy tests). For comparison of the dies, 
additional 86% and 93% specimens were prepared. 

Pure carbon-free iron samples were sought to minimize the effects of thermal 
history and heat treatment atmosphere on microstructure and properties. The start- 
ing material was a high-purity commercial atomized iron powder (Smith-Inland grade 
300M). Only a minimal amount of lubricant (0.75% Nopco wax) was premixed and this 
lubricant presumably burned off in the presintering. A preweighed amount of powder 
for the desired density was compacted in the die and pressed at the tonnage needed 
for that density. The green pressed bar was preheated and then sintered for 1/2 
hour at 2050 F in simulated dissociated ammonia. Densities through 90% were 
achieved in such a single press-and-sinter cycle. The higher densities (93% and 
96%) required recoining followed by resintering. 

The same 300M powder was hot forged to obtain stock with essentially full 
density. The powder was first pressed and sintered, then heated to about 2100 F 
for forging to a pancake. Square bars of the two sample configurations were ma- 
chined from this pancake. 

Another set of full density specimens, 0.30 inch on a side, was machined from 
a 7/16-inch-diameter rod of Armco iron. The rod stock had been included in the 
furnace during the sintering of pressed compacts. 

To prevent oxidation, all samples were sprayed with a commercial rust inhib- 
itor (WD-40 or MS-150) as soon as possible after sintering or machining. 

The density of each specimen was determined from its measured dimensions and 
weight. A theoretical density of 7.87 g/cm3 was assumed. On this basis, samples 
from the forged pancake had densities of about 7.80 g/cm3 or 99%; samples from the 
Armco rod, about 7.83 g/cm3 or 99.5%. 

ELECTROMAGNETIC MEASUREMENTS 

Measurements on all samples were made at a frequency of 25 Hz in the test 
circuit shown schematically in Figure 1. A low frequency was selected in an at- 
tempt to minimize the influence of eddy currents on the measurement of magnetic 
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Figure 1.   Test circuit for electromagnetic measurements 

parameters and was limited at 25 Hz by the availability of instrumentation. In 
order to approximate a constant-current generator, the inductance Lj is made very 
large compared to L2. The test coil consists of two identical solenoids with pri- 
mary or field coils connected in series and the secondary windings connected op- 
posing. The primary current establishes an electromagnetic field expressed by 

H0 = ^NjIKj/lOX, CD 

where Njis the primary turns, I is peak current amplitude in amperes, Kj is a 
correction factor for short multilayer solenoids, t  is the length of the pri- 
mary winding in centimeters, and H0 is the resulting field in oersted. When a 
sample is placed in one of the solenoids, the differential coil arrangement 
provides an output voltage proportional to the time rate-of-change of flux 
contributed only by the sample. The induced voltage resulting from primary-to- 
secondary coupling is eliminated. Inasmuch as the induced secondary voltage en 
is proportional to the time rate-of-change of flux, the time integral of en 
performed by the operational amplifier shown in Figure 1 provides an output 
voltage E0 proportional to the flux. Therefore, induced magnetism or flux 
density B resulting from the interaction of the applied field with the sample 
can be determined by 

B = RCv^J x 108 E0 (rms)/N2A (2) 

where RC is the integrator time constant, N2 is secondary turns, and A is the 
cross-sectional area of the sample under test. 

Because the bar-shaped samples represent an open flux structure, the actual 
field strength H differs from the applied field H0 as the result of the demag- 
netizing field created by the sample itself. This demagnetizing field is nearly 
proportional to intensity of magnetization and can be characterized by a demag- 
netizing factor N/4TT where 

H = Hf (N/4TT) (B-H) (3) 

The demagnetizing factor is not only dependent on the sample length-to-diameter 
ratio but it is also a function of permeability (u).  It was first assumed that 



if samples were of equal size in addition to having constant ratio, a constant 
applied field HQ would result in an unknown but constant actual field H which 
would permit comparative measurements. However, initial measurements of y or B 
showed that at a constant applied field H0, the actual field H calculated by 
Equation 3 varied by almost 50% from lower density to higher density samples, 
thus demonstrating the influence of permeability on N/4TT. 

Therefore, a small flat coil was fabricated and placed at the surface of the 
test sample within the solenoid for measurement of a voltage proportional to ac- 
tual field H. 

Three voltages are measured: E0 the time integral of eg; E^ the time inte- 
gral of eAIR (Figure 1); and Epj the time integral of the induced voltage of the 
actual field coil described above. The following magnetic parameters can then 
be calculated: 

H0 (applied field) = K2 EA (4) 

H (actual field) = K3 EH (5) 

B (flux density) = Kk  E0/A (6) 

N/4TT (demag factor) = (H0-H)/(B-H) (7) 

and y' (apparent a-c perm.) = B/H , (8) 

The K's are constant factors involving integrator time constants and coil geom- 
etry.  The apparent permeability y' is an engineering parameter which can be 
measured accurately at high throughput rates. However, to correct y' for a-c 
effects, the frequency of field excitation and electrical properties of the 
ferromagnetic material must be taken into account. Bozorth6 shows that the 
solution to the differential equation governing the penetration of flux into a 
bar-shaped specimen with an effective diameter d is 

H - H    |ber2(2er/d)  + bej2(2er/d)1 f<n H " H°   L ber^e + bei^e J (9) 

where e is a dimensionless parameter equal to Trd/2y f/p, p is volume resistivity 
in abohnvcm, and y is the true or corrected permeability which shall be referred 
to as relative permeability yrei- The ber and bei are the appropriate Bessel 
functions.  It can be shown that when 0>4,y'/lJ = /2/0 and therefore, 

■"rel 7r2d2y,2f/p. (10) 

In order to calculate yrei from Equation 11, the volume resistivity of each sam- 
ple was first determined. Figure 2 illustrates the standard technique used, based 
on the equation of ohmic resistance: R = p£/A, where A is cross-sectional area of 
sample. Since R = V/I, p = VA/I£. The potential drop V was measured on all sam- 
ples at I - 5 amperes from which p was then calculated. 

6.   BOZORTH, R. M.   Ferromagnetism. D. Van Nostrand Co., N. Y., 1951, p. 775-776. 
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DC POWER SUPPLY 

Figure 2.   Test circuit for resistivity measurement 

Because of significant data scatter in u'' and urei versus H and density, 
the measurement of ultrasonic velocity was undertaken as a referee check on the 
uniformity of samples not only within groups but also between groups of different 
dimensions. The ultrasonic test involved the measurement of longitudinal (com- 
pressional) wave velocity at 5 MHz on each sample both parallel with and perpen- 
dicular to the pressing direction using an accurate pulse-echo superposition 
technique.7 

RESULTS AND DISCUSSION 

The observed permeability data plotted in Figure 3 are the basis for all the 
subsequent permeability values in Figures 4 to 7. For convenience the various 
plots of permeability were separated into pairs representing specimens of the two 
geometries, i.e., lengths of 3.5 or 2.95 inches. Resistivity data needed for the 
calculations were determined on the bars and are shown in Figure 8.  (The linear 
relation to density or porosity is confirmed.) Figures 9 and 10 show ultrasonic 
velocity as a function of density. 

The line of reasoning that guided the data processing is brought out through 
the sequence of permeability plots. Initially an observed or apparent perme- 
ability u' is measured as a function of the actual field Hact and the relative den- 
sity 6, which is the ratio of the actual and theoretical densities. These data are 
plotted in Figure 3 where the abscissa is Hact and 6 is the parameter for the 
families of plots. The u' is used to calculate the more basic characteristic of 
each compact, the corrected permeability Urel> which is plotted in a similar manner 
in Figure 4. These permeability values are then used in Figures 5 and 6 to derive 
plots of \iTei  versus density at a fixed field at 12.5 Oe or 2.5 Oe.  Such plots 
show the data sought in this program, permeability as a function of density. Each 
of these figures shows considerable scatter, whose causes are considered below. 
This scatter casts doubt regarding any generalization about the relation of per- 
meability to density. The apparent relation is more nearly linear than exponential, 

7.   BROCKELMAN, R. H., Dynamic Elastic Determination of the Properties of Sintered Powder Metals in Advanced Experimental 
Techniques in Powder Metallurgy.   Pienum Press, N. Y., 1970. 
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Figure 7 shows similar plots, at 12.5 Oe, of the apparent permeability u', 
the quantity that would show up directly in a practical test of a component. Here, 
too, scatter is the dominant feature. Some glimmer of hope is offered by the sharp 
increase in u' from the 90% to the 93% set shown in Figure 7a. But doubt is cast 
on the high values at 93% by (1) the much lower y* values for the forged pancake, 
which has essentially full density, and (2) the u* values below 200 gauss for the 
shorter 93% and 95% compacts (Figure 7b). Thus, overall, the magnetic measurements 
show that magnetic properties are not suitable for evaluation of a ferrous PM 
component. 

The samples were checked by the ultrasonic technique established by Brockelman.7 

His earlier work had shown that ultrasonic velocity correlates not so much with 
density but rather with tensile strength (see Figure 6 of Ref. 7). Thus, he ex- 
amined samples of identical density achieved by different routes, so that their 
mechanical properties differed. The ultrasonic velocity was established as a means 
of characterizing mechanical behavior as affected by density and other factors, 
notably pore morphology. The samples used here for the magnetic measurements gave 
ultrasonic velocities represented in Figures 9 and 10 for directions parallel and 
perpendicular to the direction of pressing of the compact. The linear correlations 
demonstrate the value of the ultrasonic method and also inspire confidence in the 
reliability and consistency of the test samples even without mechanical measurements. 
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The factors responsible for the scatter in the permeability data can only be 
speculated on at this point. Possible differences causing erratic magnetic re- 
sponse could be present in grain size, pore size, pore morphology, and oxide(s), 
either at the surface or inside a compact. 

Several other observations from the measurements are noted here. The Armco 
iron showed much higher permeability than the forging from powder (Figures 3a, 4a, 
and 6a). A facile explanation can be presented on the basis of slightly higher 
density and unquestionably higher purity (deduced from vendor analyses). Yet the 
Armco material showed high resistivity (15 versus 12 u ohm-cm - see Figure 8, whereas 
density and purity should lower resistivity. The Armco material may have its 
resistivity increased by oxygen, which is presumed to be high.  In the ultrasonic 
measurements (Figures 9 and 10), the two "full-density" materials were 
indistinguishable. 

CONCLUSIONS 

Magnetic permeability measurements are not suitable for characterization of 
residual porosity in high-density bodies prepared from iron powder. Permeability 
at a fixed field shows linear correlation with porosity but the scatter is con- 
siderable. Ultrasonic velocity was confirmed as a more consistent measure of 
porosity, even though the interrelation is linear rather than a more sensitive 
relation, such as would be preferred for characterization for critical applications. 

10 
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